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Relativistic paramagnetism 
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Abstract. The equation of state is obtained for a degenerate system of non-interacting, 
relativistic, neutral fermions with spin in a uniform magnetic field. The question of 
arbitrarily large fields is addressed, and previous results for the ground state are extended 
to finite temperatures. 

1. Introduction 

Some attention has been given recently to the generalisation of Pauli paramagnetism 
to relativistic systems of non-interacting particles. The motivation for these studies 
stems primarily from interest in white dwarfs, and in rapidly rotating neutron stars in 
strong magnetic fields as models of pulsars. It has been estimated that relativistic 
electrons in a white dwarf can generate magnetic fields of the order of lo7 G and 
higher (Lee et a1 1969), and that in a neutron star the self-field may be of order 
1013-1014 G (Canuto and Chiu 1972). Although such fields seem enormous, they may 
be common in astrophysical systems and must be compared with the natural ‘critical’ 
field 

HC=m2c3 /eh= mc2/2po, (1) 
where p o  is the appropriate magneton. For electrons H,= 1013 G, whereas for 
neutrons Hc= 10’’ G. Therefore in neither case is the magnetic energy more than a 
small fraction of particle rest energy. 

Recently the ground-state zero-field magnetic susceptibility has been calculated 
for a completely degenerate system of relativistic charged fermions with anomalous 
magnetic moments (Chudnovsky 198 1). For electrons in relatively small (physical) 
fields the calculation is straightforward and the result illustrates that paramagnetic 
and diamagnetic effects cannot be treated independently in this relativistic system. 
The author implies, however, that the resulting expression for the susceptibility is 
also valid for neutral fermions if one sets the charge to zero and takes the magnetic 
moment to be completely anomalous. A principal aim of the present discussion is to 
demonstrate explicitly that this conclusion is fallacious, the primary reason being that 
the particle spectra are entirely different in the two models. Neither neutrons, nor 
neutrinos if they possess a small mass and magnetic moment, follow quantised orbits 
in the plane normal to a uniform magnetic field. 

We consider a collection of non-interacting neutral particles of rest mass m, spin 
f and (negative) magnetic moment PO in the presence of a uniform magnetic field H 
in the +z  direction. Although the particles can be thought of as contained in a volume 
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a, the infinite-volume limit will be employed consistently. One readily solves the 
free-particle Dirac equation with phenomenological Pauli term for the anomalous 
moment to obtain the positive-energy eigenvalues 

~ ( p ,  s) = [ c  ’ p 2  + p ;H’ + m ’c4 + 2 w L , ~ . 7  (c  ’ p  1 + m *c 4)1”~1 ’2  ( 2 )  

where p l  is the component of particle momentum transverse to the field and s = *1 
is the spin-projection quantum number (Frankel et a1 1967). 

The absolute ground state of this system has been studied by Delsante and Frankel 
(1979), who also provide a detailed analysis of the energy spectrum (21 for arbitrary 
field strengths. They find rather striking behaviour of the system when poH > mc2,  
including a cusp in the spectrum. Further, it is found that the Fermi energy EF vanishes 
as H increases without bound, and that both EF and the total energy are independent 
of particle mass beyond a well defined value of the magnetic field strength. 

There is ample reason to believe that these anomalous features uncovered by 
Delsante and Frankel are unphysical, because for field strengths of the order of H, 
or greater equation ( 2 )  surely does not provide the correct spectrum. In the case of 
electrons this point has been discussed in some detail (Jancovici 1969, Newton 1971), 
where it is shown that at such superstrong magnetic field strengths the fundamental 
properties of electrons begin to change significantly owing to the radiative corrections 
from quantum electrodynamics. This assertion can be verified directly by recalling 
that the Dirac equation with minimal electromagnetic coupling is 

y’”(p, - eA ,Jc )$  = mc$. i 3 )  

But A, represents the total four-potential, including both external fields and self-fields 
of the particle itself. Thus equation (3) can be written more explicitly as 

(4a 1 [ y ” ( p ,  - e A y / c ) - m c ] ~ + h  = (e/c)y”AL$ 

where in the covariant gauge 

(46 1 

and D is the electromagnetic Green function. The right-hand side of the non-linear 
equation (4a) contains all radiative effects for a single charged particle. In the case 
of a uniform magnetic field of arbitrary strength the integral has been examined 
carefully (Ternov et a1 1968), and it is found that the leading-order correction to the 
particle energies is a very complicated function of H, particularly for strong fields. 
Only in the linear approximation is it possible to represent the magnetic effects as 
simply proportional to a constant anomalous moment po. If this is true for the electron, 
one would expect the distortion of the neutron to be even more pronounced when 
H = H,. 

In the astrophysical models of interest, however, both mc’ and E ,  are several 
orders of magnitude greater than p a ,  even for fields on the order of 10’’ G. Therefore 
the models of present physical interest can be described by the inequalities 

( 5 )  

where p is the chemical potential of the degenerate relativistic system. There is no 
restriction on either the absolute or relative sizes of (kT, mc2, EF), but the completely 
degenerate system is always described by k T  << EF. One can now employ the spectrum 

poH (< (mc2,  p - E F )  
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(2) for such relatively weak magnetic fields in pure-moment systems, for which 
EF= 30 MeV, mc2 = lo3 MeV. 

Of course, one can extract the zero-field, ground-state magnetic susceptibility of 
a non-interacting neutron gas, say, from the work of Delsante and Frankel. A further 
goal of the present discussion, however, is to show that one can actually calculate an 
exact equation of state for this system under the physical restrictions ( S ) ,  with tem- 
perature corrections. That is, for particles with spectrum given by equation (2) the 
work of Delsante and Frankel is extended to thermodynamic systems at finite tem- 
perature. Finally, the ground-state magnetic susceptibility is compared with that 
obtained for the electron gas in similar physical fields. 

2. Degenerate equation of state 

The single-particle Boltzmann partition function for a system of non-interacting pure 
moments is readily evaluated from equation (2) by direct summation (Frankel et a1 
1967) 

Zl(p) = ~ e e i [ ( i - ~ ) 2 K K z ( ~ i - r 1 1 ) + ( i + ~ ) 2 K ~ ~ S + ) 7 )  4.nn 

+h (i + 77)Wl(i+ 77)Lo(S + 77) +Ll(S + 7 7 ) K O ( i  + 77)) 
- h(i - 7 7 ~ ~ ~ 1 ~ I S - 7 7 I ~ ~ o ~ l i - 7 7 l ~ + ~ l ~ l t - 7 7 l ~ ~ o ~ 1 5 - 7 7 1 ~ ~ 1  (6) 

in terms of modified Bessel functions K , ( z )  and modified Struve functions L,(z).  The 
properties of these functions are described elsewhere (Abramowitz and Stegun 1972). 
In equation (6) the following notation has been introduced: 

i =BmcZ 77 =@OH A o = p h ~  (7) 

and p = (kT)-', with k Boltzmann's constant and T the absolute temperature in K. 
The zero of energy has been taken as zero, so that the non-relativistic limit of Z1 is 
regained immediately from equation (6). 

It is known that, quite generally, the quantum-statistical description of a free- 
particle system can be obtained directly from the single-particle partition function 
Zl(p) by means of the inverse Mellin transform representation for the grand partition 
function (Grandy and Rosa 1981): 

o < c  < 1. (8) r-' cosec(.nt) eP"Zl(pt) dt 

When Z1 is given by equation (6) it is readily seen that the integral converges for all 
values of the parameters, and that the integrand has a branch point at the origin as 
well as simple poles at t = n = * l ,  *2, . . . . Explicit evaluation is carried out by closing 
the contour and employing Cauchy's residue theorem. For example, closure to the 
right in a semicircle yields the fugacity expansion valid at high temperatures and low 
densities. 

The strongly degenerate system is described by closing the contour of equation 
(8) to the left, as in figure 1, with appropriate indentation around the branch cut 
along the negative real axis. As the radius R of the quarter-circles tends to infinity 
the integrand will vanish on those portions of the contour labelled BC and DA, 

1 
In ZG = 7 

21 c--135 
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Figure 1. Contour employed in evaluating the equation of state for the degenerate system. 

provided that 77 < pp, 77 < @p + 2t .  These are just the conditions implied by equation 
( 5 ) .  The integral for l n Z G  therefore reduces to the negative of that portion on U 
from C to D along the branch cut and encircling the origin in the negative direction, 
in the limit R + 00. 

Substitution of equation (6) into equation (8) yields a sum of six separate integrals 
taken around the contour U, each of which can be evaluated by means of techniques 
similar to those employed in the zero-field case (Grandy and Rosa 1981). Indeed, 
the first two integrals, corresponding to the terms in K 2 ( 2 )  in equation (6), have 
precisely the same form as that encountered for H = 0, and so are identified immedi- 
ately. Introduce simple generalisations of the zero-field parameters 

(9a 1 

(96 1 

a+ = a{ / (<*q)  - a = 1 + p / m c 2  

x*=CY*-l-x=CY -1 
q+o 

r1+0 

2 2 

where x =po/mc and p o  is the solution of 
2 4 112-  2 p = ( c 2 p i + m  c mc . 

The correct field-dependent Fermi energy, of course, is determined by writing p = 
E ( p ,  s )  - mc2, in which there can be no ambiguity because the chemical potentials 
for spin-up and spin-down particles must be equal in thermal equilibrium. 

If we write the pressure as 

P = (pn)-’ In zG = p1 + p 2  

P I  =P1(+)+P1(-) p2 = P2(+)  +Pz(-) 
then the two integrals containing K Z  yield the contribution 

2 rr mc 
6 A ,  

PI(*) =- 3 [ f ( x * )  + 4 r r 2 1 - 2 x * ( x ;  + 1)”2(a/a*)2 
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where A, = h/mc and 

f(x)  = x (2x2  - 3)(1+ x2)l/ '  + 3 sinh-' x 

is the characteristic function of the zero-field theory. As in that case (Chandrasekhar 
1957) the temperature expansion of equation (1 1)  is indeed in terms of small quantities, 
because 

which implies the smallness of succeeding terms. 
The remaining four integrals arising from equations (6) and (8) contain Struve 

functions and vanish as H + 0. They can be evaluated formally in a manner similar 
to that employed above and we find that 

P2(*) = * ( ~ I ~ ~ / A ~ ~ ~ ) ( ( u ~ / ( u * ) ~ [ ( ( Y ~ / ~ T ) ~  +:+ ( $ ~ r ~ ) ( a ( / a , ) ~  + (2y  - l ) ( a 5 / a - t ) 2 / 2 ~ 2  

- 3 ( a 5 / 3 ~ a * ) ~  ln(2a,) - ( 2 ? / 3 ~ ~ ) ( a t / a * ) ~  

+ (a212/dJ1(a*)  +alJz(a*)l (14)  

where y = 0.577 21.  . . is the Euler-Mascheroni constant. The functions JI and J2 are 
defined as 

J1(ad=I0 dy l n y  e - ' y - 2 [ G ( ~ / a , ) ( l + 3 / y ) - ( 2 / ~ a , ) l ~ ( y / a , ) l  (15) 

J2(a,) = lo dy e- '~-~G(y/a,)[(rr/6*5)y + ( 7 ~ ~ / 3 6 0 a ~ [ ~ ) y ~  +.  . . ] 

m 

CO 

where I , ( z )  is the modified Bessel function of the first kind and 

G(x)  = Ii(x)Lo(x) -lo(x)Li(x) 

2 "  
= - I rl l ( t )  dr. 

7T.X 0 

Remarkably, the integrals J1 and Jz  can be evaluated exactly in terms of generalised 
hypergeometric functions, and then in terms of elementary transcendental functions. 
This evaluation is outlined in the appendix. Thus, with equations ( l o ) ,  ( 1 1 )  and (14)  
we have obtained an exact equation of state for the degenerate system, with tem- 
perature corrections. All of the thermodynamic functions can now be found by direct 
differentiation. 

3. Ground-state magnetisation 

At T = 0 the pressure of the completely degenerate system is given by 
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where f ( x , )  is defined in equation (12) and equation (A.12) has been used for Jl!cu.). 
This is the exact equation of state in this limit, with no approximations, as long as 
b o H  is less than both mc2 and EF. 

Owing to the inequalities ( 5 ) ,  it is useful at this point to examine the (relatively) 
weak-field case, in which only leading-order contributions in @dl are retained. 
Careful approximation of all the quantities in equations 118) yields 

( r2h3c3/m4c8)P = &f(x) + i ( q 2 / 1 2 ) [ x  (1 +x2)1’2 + sinh-’(x)] (19) 

where x is the zero-field quantity defined by equation (9c). One readily computes 
the number density n = N/R in this approximation: 

n = aP/ap 

Both the number density and Fermi energy are thus given to this order by the zero-field 
results. Hence, 

x T-0 xF=pF/mc (21) 

which reduces to (2EF/mc2)’” in the non-relativistic limit. That is, the quantity in 
brackets in equation (19) reduces to ~ X F ,  which is indeed the correct limiting result. 

In order to facilitate comparison with other results it is convenient to introduce 
the additional notation 

With this notation, and the logarithmic representation of sinh-’(x), equation (19) can 
be rewritten as 

If one now calculates the energy density, E /R,  the earlier result is regained (Delsante 
and Frankel 1979), with the difference that these authors took the zero of energy to 
be Eo. 

The magnetisation is obtained directly from equation (191, M = aP/dH, so that 
the ground-state, zero-field magnetic susceptibility is 

x = aM/aH 

This is precisely what one would obtain from the work of Delsante and Frankel, but 
is here deduced from a more general description of the system. 
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It is also instructive to introduce the Fermi velocity uF  = C X ~  and rewrite equation 
(25 )  as 

exhibiting the non-relativistic limit of Pauli paramagnetism. 
Unlike the electron gas (Chudnovsky 1981), the paramagnetic pure-moment system 

is completely stable, even as u F +  c. Moreover, there is essentially no relation between 
(26) and the corresponding result for the electron gas, for just the reason emphasised 
by Chudnovsky: in the relativistic system the paramagnetic and diamagnetic effects 
are intertwined such that they are not easily separated, either physically or mathemati- 
cally. 
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Appendix. Evaluation of the integrals J1 and J z  

The integrals defined in equations (15) and (16) of the text are evaluated by first 
noting that the integrands can be expanded in uniformly convergent power series. 
One then integrates term-by-term, after which it  is possible to identify the resulting 
series as generalised hypergeometric functions 

all of which converge within the unit circle. If F ~ H  < EF, then a i 2  < 1 always. 
It is a straightforward matter to verify by direct expansion that, in J2, 

&; 0 ;  z )  = (1 - z ) - 3 / 2  L4.4) 

3F2[3, 5 ,  1; 2, ?; 2 )  

(1 - z )1’2[z ‘I2 - (1 - z ) ~ ’ ~  sin-’(z ‘I2)]. (A.5) 1/2  - 1 -  = 6 [ 1 - z + i l - z )  1 6z-3/2 

These funct.ions only contribute at finite temperatures. 
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The evaluation of 4F3 is less direct, beginning with the contiguous function relation 
(Rainville 1945, 1960) 

~ ~ ( l , l , ~ , $ ; 2 , 3 , ~ ; ~ ) = ~ ~ F 2 ( 1 , l r ~ ; 2 , 3 ; ~ ) - f ~ F ~ ( 1 , ~ , ~ ; 3 , ~ ~ ~ ) .  
(-4.61 

Each of the functions 3F2 can be evaluated by means of its integral representation 
(Rainville 1960), which are almost identical: 

- 1  

3F2(l, 1, t; 2 , 3 ;  z )  = J ~ 2F1(1, $; 3; zt)  dt 

3F2(1, i, $; 3, I; z )  = 5 

0 

1 

13'22Fl(l, t ;  3;  z t )  dt. I 
(A.7) 

(A.8) 

Again by direct expansion, one verifies that 

iA.9) 1 / 2  - 2  z F i ( l , t ; 3 ; y ) = 4 [ 1 + ( l - y )  1 
and straightforward integration yields 

3F2(l ,  1, ?; 2, 3; z )  = 8z- ' [$-z- '+z- ' ( l  - ~ ) " ~ + l n  2 - l n [ l + ( 1  -z )"~] ]  

3 ~ 2 ( 1  9 1. 2 3 2 ,  5 .  3 9 1. 2 1  z ) = ~ ~ ~ - 5 / " ~ ~ 1 ~ 2 - ~ 1 ' 2 ( ~ - ~ ) 1 ~ 2 - 1  3 3/2-cos-1(1-z)1/2]. 

obtain the simple expression 

(A.10) 

( ~ ~ 1 1 )  

With substitution of equations (A.6), (A.lO) and ( A . l l )  into equation (A.2) we 

JI(aI)=-y(3.rra(3.rra:)-'+i3.rrcu+) 4 - 1 5  (&CY* 2 - 3 a +  4 + ~ x , c Y ,  3 

+a:  ln(2a,) -a:  sinh-'(x,)+az cos-'(x,/cu,)). (A. 12) 
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